USN

First Semester M.Tech. Degree Examination, Dec.2015/Jan.2016 **Advanced Embedded Systems**

Tir	ne: í		arks:100
		Note: Answer any FIVE full questions.	
1	a.	Differentiate between RISC and CISC processors.	(04 Marks)
	b.	Explain different types of ROM used in an embedded system design.	(08 Marks)
	c.	Explain with diagram 7 segment display and LED.	(08 Marks)
2	a.	Explain diagram UART and USB.	(08 Marks)
	b.	Explain watchdog timer and reset circuit.	(04 Marks)
	c.	Discuss characteristics of an embedded system.	(08 Marks)
3	a.	Explain non operational quality attributes.	(06 Marks)
	b.	Explain UML relationship and UML diagrams with examples.	(08 Marks)
	c.	Explain dataflow graph and control flow graph.	(06 Marks)
4	a.	What is a printed circuit board? What are different types of PCB and fabrication	n methods?
		How can be finished PCB made operational?	(10 Marks)
	b.	Explain embedded firmware design approaches.	(10 Marks)
5	a.	Describe the architecture of cortex M3 with neat block diagram.	(10 Marks)
	b.	Explain nested interrupts, tail chaining interrupts and late arrival exception handli	
			(06 Marks)
	c.	Explain memory map of cortex M3 processor.	(04 Marks)
6	a.	Give an overview of nested vector interrupt controller and explain its operation.	(10 Marks)
	b.	Explain memory protection unit of cortex M3 and debug architecture of cortex M	3.
			(10 Marks)
7	a.	Three process ID's P1, P2, P3 with estimated computation time 10, 5, 7 miles	illi seconds
		respectively enters the ready queue together in the order P1, P2, P3. Calculate	the waiting
		time, turnaround time (TAT) for each process and the average waiting time and	turnaround
		time (assuming there is no I/O waiting for the process).	(06 Marks)
	b.	What is deadlock? What are the techniques to detect and prevent deadlock?	(08 Marks)
**	6.	Explain priority inversion with a neat diagram.	(06 Marks)
8	a.	What is message passing? Give classification for message passing.	(10 Marks)
	b.	What are the different hardware debugging tools used in embedded product devel	opment? (05 Marks)
	c.	Explain JTAG based boundary scanning for hardware testing.	(05 Marks)
		-	